O.P.Code:23EE0219	R23	H.T.No.		
	1			

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

			(AUTONOMOUS)			15
			B.Tech. III Year I Semester Regular Examinations December-9 POWER SYSTEMS-II	2025		
			(Electrical & Electronics Engineering)			357
Ti	me	e: 3		Max.	Mar!	ks: 70
			PART-A		0.0	
			(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
	1	a	What is the formula for effect of ground on capacitance of single	CO1	L1	2M
			conductor?			
		b	Explain the advantages of bundled conductors in a transmission lines.	CO1	L2	2M
		c		CO ₂	L2	2M
			What is surge impedance?	CO ₂	L1	2M
		e	What are the insulating materials used in insulators?	CO ₃	L1	2M
		f	Define safety factor of insulator.	CO3	L1	2M
		g	Give two factors that will affect the sag in transmission line.	CO ₄	L2	2M
		h	Define radio interference due corona.	CO5	L1	2M
		i	Explain the importance of voltage control.	CO6	L2	2M
		j	What is asynchronous load in a transmission system?	CO6	L1	2M
			PART-B			
			(Answer all Five Units $5 \times 10 = 50$ Marks)			
СЕ	1		UNIT-I			
	2	a	Explain the different types of conductors.	CO1	L2	5M
			Find the expression for the inductance of single-phase two-wire	CO1	L3	5M
			transmission line.	COI	LS	3111
			OR ·		100	- 64
	3	a	Derive an expression for the capacitance per phase for a 3-phase	CO1	L3	6M
			overhead transmission line when conductors are symmetrically placed.	COI	LJ	0171
	er i	b	Calculate the capacitance per km of a three-phase transmission line as	CO1	L3	4M
	-		shown in the following figure. The radius of the conductor is 0.5cm. The	001	23	-1147
			lines are un-transposed			
			-4m4m			
			CINCETT IN			
			CNIT-III			
	4	a	Derive the equations for sending voltage and sending current of medium	CO2	L3	5M
			transmission line using the nominal- T method with a neat phasor			
			diagram.			
		b	Derive the ABCD constants of the medium transmission line by using the	CO2	L3	5M
			nominal-T method.			
			OR			
	5	5	A balanced 3-phase load of 30 MW is supplied at 132 kV, 50 Hz and	CO2	L3	10M
			0.85 p.f. lagging by means of a transmission line. The series impedance			
			of a single conductor is $(20 + j52)$ ohms and the total phase-neutral	-		
		*	admittance is 315×10^{-6} Siemen. Using nominal-T method, determine:			
			(i) the A, B, C and D constants of the line (ii) sending end voltage and			- X
			(iii) voltage regulation of the line.	v 1 5		

		UNIT-III			
6		Explain various types of insulators with neat diagrams. OR	CO3	L2	1
7	a	A three-phase overhead line is suspended by a suspension type insulator, which consists of three units. The potential across the top unit and middle unit are 12kV and 18kV respectively. Calculate: (i) the ratio of capacitance between pin and earth to the self-capacitance of each unit (ii) line voltage and (iii) string efficiency.	CO3	L4	352
T	ʻ p	Explain the mathematical expression for string efficiency for 3 disc suspension insulator.	CO3	L3	ř
		UNIT-IV			
8	a	Derive the expression for sag of transmission line with equal supports.	CO4	L3	
	b	A 132 kV transmission line has the following data: weight of conductor =	CO4	L4	
		680kg/km; length of span = 260m; ultimate strength = 3100kg, safety			
		factor=2. Calculate height above the ground at which the conductor			
		should be supported. Ground clearance is 10 meters.			
		OR			
9		What is corona? Explain the formation of corona briefly.	CO ₅	L1	÷
2	b	A 3-phase, 220 kV, 50 Hz transmission line consists of 1.5 cm radius	CO ₅	L4	2
	. 9	conductors spaced 2 metres apart in equilateral triangular formation. If			
		the temperature is 40°C and atmospheric pressure is 76 cm, calculate the	- 8		
		corona loss per km of the line. Take $m_0 = 0.85$.			
**	1.7	UNIT-V			
10		Explain with a neat sketch:	CO6	L2	10
		i. Booster transformers ii, Induction regulators	-		
, Tri		OR			
-11		Explain the effect of shunt and series capacitors with neat phasor diagrams.	CO6	L2	10
		*** END ***			
		*** FIND ***			

Page 1 of 2